Transcriptional Activity, Chromosomal Distribution and Expression Effects of Transposable Elements in Coffea Genomes
نویسندگان
چکیده
Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C. arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE sequences.
منابع مشابه
Site-Specific Insertion Polymorphism of the MITE Alex-1 in the Genus Coffea Suggests Interspecific Gene Flow
Miniature Inverted-repeat Transposable Elements (MITEs) are small nonautonomous class-II transposable elements distributed throughout eukaryotic genomes. We identified a novel family of MITEs (named Alex) in the Coffea canephora genome often associated with expressed sequences. The Alex-1 element is inserted in an intron of a gene at the CcEIN4 locus. Its mobility was demonstrated by sequencing...
متن کاملEukaryotic Transposable Elements: Teaching Old Genomes New Tricks
When transposable elements were discovered in maize by Barbara McClintock over 50 years ago they were regarded as a curiosity—now they are known to be to the most abundant component of probably all eukaryotic genomes. As such, they make up the vast majority of the output of genome sequencing projects. The availability of so much new information has fueled a revolution in their analysis and stud...
متن کاملTransposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles
Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and speci...
متن کاملTransposable Elements Re-Wire and Fine-Tune the Transcriptome
What good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs-particularly retrotransposons-contribute to tra...
متن کاملCut-and-Paste Transposons in Fungi with Diverse Lifestyles
Transposable elements (TEs) shape genomes via recombination and transposition, lead to chromosomal rearrangements, create new gene neighborhoods, and alter gene expression. They play key roles in adaptation either to symbiosis in Amanita genus or to pathogenicity in Pyrenophora tritici-repentis. Despite growing evidence of their importance, the abundance and distribution of mobile elements repl...
متن کامل